skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lingappa, Usha"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Euendolithic microorganisms, capable of bioerosion in carbonate substrates, play an important role in modern marine ecosystems and have a fossil record extending into deep time. Understanding the factors driving microboring behaviour is essential for interpreting their ecological impact and reconstructing ancient environmental conditions. In this study, we conducted field incubation experiments across multiple sites at Little Ambergris Cay in the Turks and Caicos Islands, examining microboring density in abiotic optical calcite and aragonite under varying conditions of light, subaerial exposure, current energy, substrate mineralogy and trace metal content. We observed sinuous tunnels within 1 week of incubation in transparent calcite, with longer deployment times (2.5–5 months) resulting in meaningful increases in boring density. We also documented boring activity in dark conditions, suggesting potential for enhanced mineral dissolution at night when geochemical conditions are more optimal. Trace metal analysis of our experimental substrates revealed Fe/Ca and Mn/Ca ratios exceeding western Atlantic sea water estimates by 1–3 orders, with calcites more enriched in Mn than aragonites, offering preliminary support for the novel hypothesis that dissolution of CaCO3minerals might be a useful source of trace metals for euendoliths. Sea water chemistry varied across sites, particularly between restricted interior and open platform sites. A comparison of boring densities suggests that trace metal abundance, mineralogy, local sea water CaCO3mineral saturation state (Ω) and subaerial exposure (e.g. intertidal vs. shallow subtidal) may all influence microboring. These findings offer new perspectives on the euendolithic lifestyle, showing how substrate selection and temporal partitioning of dissolution activity balance metabolic costs with environmental constraints. They also enhance our ability to interpret the fossil record and bioerosion dynamics under changing conditions. 
    more » « less
    Free, publicly-accessible full text available November 1, 2026